Stabilized finite element methods for miscible displacement in porous media

نویسندگان

  • YUTING WEI
  • DOUGLAS
چکیده

In this paper, we shall dérive a new model for the miscible displacement of one incompressible fluid by another in porous media using simple physical conservation laws For a dilute mixture m which the density can be approximated by a constant, this new model reduces to the standard one used for the last decade The model is governed by a nonlinear system consisting of pressure and concentration équations The pressure équation is elliptic, while the concentration équation is parabolic but normally convection-dominated We then present and analyze some extensions of the stabihzed finite element methods that have been developed for steady convection-diffusion problems to the Systems of miscible displacement The analysis is first g iv en to the concentration équation for a given vélo city field, and then extended to the gênerai case where the velocity is obtained by solving pressure équations with a mixed finite element method In both cases, the stabilities and error estimâtes are given Résumé — Dans cet article, nous présentons un nouveau modèle pour le déplacement miscible d'un fluide incompressible par un autre dans les milieux poreux utilisant des lois simples physiques de conservation Pour un mélange dilué dans lequel la densité peut être approchée par une constante, ce nouveau modèle se réduit a celui utilisé depuis ces dix dernières années Le modèle est décrit par un système non linéaire composé des équations de la pression et de la concentration U équation de la pression est elliptique tandis que V équation de la concentration est parabolique, mais normalement dominée par la convexion Nous présentons et analysons quelques extensions au système de déplacement miscible des méthodes d'éléments finis stabilisées qui ont été développées pour les problèmes de convexion-diffusion stationnaires On considère d'abord l'équation de la concentration pour un champ de vitesse donné puis le cas gêner al ou la vitesse est obtenue par la résolution de V équation de la pression par une méthode d'éléments finis mixtes Dans les deux cas, on donne les estimations de la stabilité et de l'erreur (') Manuscript received January 10, 1994 (') Center for Applied Mathematics, Purduc University, West Latayette IN 47907, U S A M AN Modélisation mathématique et Analyse numérique 0764-5 83X/94/05/S 4 00 Mathematical Modelling and Numencal Analysis © AFCET Gauthier-Villars

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Analysis of Finite Element Methods for Miscible Displacements in Porous Media

Finite element methods are used to solve a nonlinear system of partial diierential equations which models incompressible miscible displacement of one uid by another in porous media. From a backward nite diierence discretization we deene a sequentially implicit time-stepping algorithm which uncouples the system. The Galerkin method is employed to approximate the pressure, and improvement velocit...

متن کامل

L-norm Error Bounds of Characteristics Collocation Method for Compressible Miscible Displacement in Porous Media

A nonlinear parabolic system is derived to describe compressible miscible displacement in a porous medium in non-periodic space. The concentration is treated by a characteristics collocation method, while the pressure is treated by a finite element collocation method. Optimal order estimates in L2 is derived.

متن کامل

A Second Order Characteristic Method for Approximating Incompressible Miscible Displacement in Porous Media

An approximation scheme is defined for incompressible miscible displacement in porous media. This scheme is constructed by two methods. Under the regularity assumption for the pressure, cubic Hermite finite element method is used for the pressure equation, which ensures the approximation of the velocity smooth enough. A second order characteristic finite element method is presented to handle th...

متن کامل

A Combined Mixed Finite Element and Discontinuous Galerkin Method for Miscible Displacement Problem in Porous Media

A combined method consisting of the mixed finite element method for flow and the discontinuous Galerkin method for transport is introduced for the coupled system of miscible displacement problem. A “cut-off” operatorM is introduced in the discontinuous Galerkin formular in order to make the combined scheme converge. Optimal error estimates in L(H) for concentration and in L(L) for velocity are ...

متن کامل

A combined mixed finite element method and local discontinuous Galerkin method for miscible displacement problem in porous media

A combined method consisting of the mixed finite element method for flow and the local discontinuous Galerkin method for transport is introduced for the one dimensional coupled system of incompressible miscible displacement problem. Optimal error estimates in L∞(0, T ;L) for concentration c, in L(0, T ;L) for cx and L ∞(0, T ;L) for velocity u are derived. The main technical difficulties in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017